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Abstract. This paper presents a reproducible security blueprint for containerized applications on Amazon 

Web Services. The approach combines Zero Trust enforcement in an Elastic Kubernetes Service service 

mesh, using mutual Transport Layer Security and least-privilege, route-scoped policies, with 

lightweight edge anomaly detection on Amazon CloudFront and the Application Load Balancer, plus 

event-driven remediation. Measurements indicate a smaller attack surface and minimal overhead. 
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As cloud workloads scale and evolve rapidly, perimeter-centric security proves 

insufficient against modern threats and frequent misconfigurations in public clouds [1]. 

This work proposes a practical, reproducible approach for AWS-hosted, containerized 

applications that combines a Zero Trust architecture within EKS and lightweight 

anomaly detection at the edge (CloudFront/ALB) with automated, event-driven 

remediation [2]. The goal is to minimize implicit trust between microservices and to 

detect traffic deviations early without heavy operational overhead, with decisions 

grounded in measurable security outcomes. Inside clusters, lateral movement is 

encouraged by over-permissive connectivity and coarse-grained authorization, while 

at the boundary volatile traffic regimes–from benign flash-crowds to short, intense 

bursts–can resemble denial-of-service behaviors and defeat static rule sets [1]. A robust 

solution must be measurable, CI/CD-friendly, and resilient under fluctuating loads 

while preserving service-level objectives for latency and throughput [2]. 

To ensure reproducibility, the traffic corpus is partitioned into disjoint time 

windows that reflect real operating regimes rather than random shuffles. Background 

minutes capture routine usage across diurnal patterns; controlled bursts provide short, 

high-pressure intervals without saturating the edge; and benign surges approximate 

flash-crowd dynamics that are known to trigger false alarms in naіve detectors. Labels 

are derived from scenario schedules and cross-checked against rate and error-ratio 

thresholds. Features are kept deliberately compact and interpretable–minute-level 

request rate, unique-client cardinality, response-code proportions, and dispersion 

across source networks and user agents–so inference remains cheap and diagnostic 

explanations stay straightforward. 

The architecture has four layers. At the edge, Amazon CloudFront fronts the 

application with AWS WAF attached; access logs are persisted to S3 for aggregation 

and analysis [3]. The load-balancing tier uses Application Load Balancer with access 
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logging to S3 [4]. The compute layer is Amazon EKS, where a service mesh enforces 

mutual TLS by default, assigns strong service identities to pods, and applies least-

privilege, route-scoped policies that confine communication to explicitly defined paths 

[3], [5]. The observability and response layer consolidates telemetry (CloudWatch and 

CloudTrail), derives compact features, performs inference using simple models, and 

triggers automated mitigation when anomalies are confirmed [6]. 

Anomaly detection operates on one-minute aggregates that capture edge-traffic 

characteristics: request rate, count of unique clients, proportions of 4xx/5xx responses, 

and dispersion across IPs and user agents. Using transparent models such as logistic 

regression and decision trees keeps inference predictable and debuggable; critically, 

detection thresholds are fixed after validation on representative slices that cover steady 

background traffic, adversarial bursts, and benign surges [7]. This stabilization avoids 

constant retuning during spiky periods and reduces false alarms during clean intervals. 

The experiment follows a fixed-threshold protocol: detector thresholds are frozen 

on a validation slice that spans the three regimes, and then evaluated on          hold-out 

minutes without retuning. Two ablations clarify what drives reliability. First, the 

benign-surge slice is removed from the training/validation mix; the expected effect is 

a rise in false alarms during clean peaks. Second, dispersion indicators are removed 

from the feature set; this typically slows the onset of alerts on mixed traffic and 

increases time-to-detect. Together, these ablations justify both the feature choices and 

the decision to stabilize thresholds instead of auto-tuning them under load. 

Zero Trust in the mesh reduces the attack surface by constraining network 

reachability and tying authorization to verified service identities and request context 

[2], [5]. Mutual TLS prevents unauthorized connections; policy guardrails ensure that 

only approved inter-service routes are viable. Coupling this with edge-level anomaly 

monitoring yields a “double safety net”: if inbound traffic drifts toward suspicious 

patterns, automated playbooks can escalate controls–progressively challenging clients, 

limiting rates, or temporarily blocking routes–without manual intervention on the 

critical path [3], [4]. Operationalization emphasizes policies-as-code and safe rollout. 

Mesh policies and edge controls are versioned and validated in CI before deployment; 

synthetic canaries exercise rapid rate shifts and protocol quirks; and every change is 

annotated in metrics and traces to attribute latency and accuracy effects 

unambiguously. Remediation playbooks follow a graded path–lightweight challenges 

and short-lived limits first; targeted blocks only if deviations persist–with automatic 

rollback once feature vectors re-enter the normal corridor. Cost guards are applied to 

logging and inference so that the blueprint remains feasible in small lab accounts while 

scaling predictably to larger testbeds. 

To keep the evaluation focused and space-efficient, Table 1 summarizes six key 

KPIs used throughout the study. The metrics jointly capture overhead (latency and 

throughput), detection quality (precision/recall/F1 and false alarms during clean 

periods), and operational responsiveness (time-to-detect and the share of incidents 

resolved automatically). Targets are chosen to keep mesh/mTLS overhead within a 

strict budget while preserving timely detection during adversarial bursts and 

maintaining operator-free mitigation for the majority of routine incidents. 
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Table 1. Compact evaluation KPIs 
KPI What it captures How it’s measured Target 

p95 latency overhead Tail impact of mesh/mTLS 
Δ p95 service-to-service 

vs. baseline 
≤ 5% 

Throughput impact Capacity under controls 
Δ RPS/bitrate on control 

endpoints 
≤ 3% 

Precision / Recall / F1 
Detection quality across 

regimes 

Minute-level aggregates 
(CF/ALB) with labeled 

windows 
F1 ≥ 0.95 

False alarms per clean 
hour 

Robustness in quiet 
periods 

FP count over purely benign 
intervals 

0–1/hr 

Time-to-Detect (TTD) Alert timeliness Minutes from deviation to alert ≤ 1 min 

Auto-mitigation share Operator load reduction 
% incidents closed 

automatically 
≥ 80% 

 
 Using these KPIs, the evaluation reports mean and p95 latency overhead on 

internal calls, throughput impact, stability under load, precision/recall/F1 across three 
traffic regimes, the count of false alarms during clean periods, and time to detection 
and time to recovery for scenarios that trigger automated responses. The study also 
tracks the share of incidents mitigated without operator involvement and the fraction 
of unauthorized intra-cluster connection attempts blocked by mesh policies. 

The expected outcome is a measured confirmation that representative training 
data matter more than model complexity for edge anomaly detection; that false-positive 
rates remain low during clean periods while timely detection is preserved during 
adversarial bursts; and that mesh-enforced mutual TLS and route segmentation 
introduce minimal overhead within agreed service objectives. The resulting blueprint 
is immediately applicable in academic labs and production-like testbeds, using 
managed AWS services, transparent features, and simple models to raise security 
posture without brittle complexity. 
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