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Abstract. This paper presents a reproducible security blueprint for containerized applications on Amazon
Web Services. The approach combines Zero Trust enforcement in an Elastic Kubernetes Service service
mesh, using mutual Transport Layer Security and least-privilege, route-scoped policies, with
lightweight edge anomaly detection on Amazon CloudFront and the Application Load Balancer, plus
event-driven remediation. Measurements indicate a smaller attack surface and minimal overhead.
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As cloud workloads scale and evolve rapidly, perimeter-centric security proves
insufficient against modern threats and frequent misconfigurations in public clouds [1].
This work proposes a practical, reproducible approach for AWS-hosted, containerized
applications that combines a Zero Trust architecture within EKS and lightweight
anomaly detection at the edge (CloudFront/ALB) with automated, event-driven
remediation [2]. The goal is to minimize implicit trust between microservices and to
detect traffic deviations early without heavy operational overhead, with decisions
grounded in measurable security outcomes. Inside clusters, lateral movement is
encouraged by over-permissive connectivity and coarse-grained authorization, while
at the boundary volatile traffic regimes—from benign flash-crowds to short, intense
bursts—can resemble denial-of-service behaviors and defeat static rule sets [1]. A robust
solution must be measurable, CI/CD-friendly, and resilient under fluctuating loads
while preserving service-level objectives for latency and throughput [2].

To ensure reproducibility, the traffic corpus is partitioned into disjoint time
windows that reflect real operating regimes rather than random shuffles. Background
minutes capture routine usage across diurnal patterns; controlled bursts provide short,
high-pressure intervals without saturating the edge; and benign surges approximate
flash-crowd dynamics that are known to trigger false alarms in naive detectors. Labels
are derived from scenario schedules and cross-checked against rate and error-ratio
thresholds. Features are kept deliberately compact and interpretable—minute-level
request rate, unique-client cardinality, response-code proportions, and dispersion
across source networks and user agents—so inference remains cheap and diagnostic
explanations stay straightforward.

The architecture has four layers. At the edge, Amazon CloudFront fronts the
application with AWS WAF attached; access logs are persisted to S3 for aggregation
and analysis [3]. The load-balancing tier uses Application Load Balancer with access
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logging to S3 [4]. The compute layer is Amazon EKS, where a service mesh enforces
mutual TLS by default, assigns strong service identities to pods, and applies least-
privilege, route-scoped policies that confine communication to explicitly defined paths
[3], [5]. The observability and response layer consolidates telemetry (CloudWatch and
CloudTrail), derives compact features, performs inference using simple models, and
triggers automated mitigation when anomalies are confirmed [6].

Anomaly detection operates on one-minute aggregates that capture edge-traffic
characteristics: request rate, count of unique clients, proportions of 4xx/5xx responses,
and dispersion across IPs and user agents. Using transparent models such as logistic
regression and decision trees keeps inference predictable and debuggable; critically,
detection thresholds are fixed after validation on representative slices that cover steady
background traffic, adversarial bursts, and benign surges [7]. This stabilization avoids
constant retuning during spiky periods and reduces false alarms during clean intervals.

The experiment follows a fixed-threshold protocol: detector thresholds are frozen
on a validation slice that spans the three regimes, and then evaluated on hold-out
minutes without retuning. Two ablations clarify what drives reliability. First, the
benign-surge slice is removed from the training/validation mix; the expected effect is
a rise in false alarms during clean peaks. Second, dispersion indicators are removed
from the feature set; this typically slows the onset of alerts on mixed traffic and
increases time-to-detect. Together, these ablations justify both the feature choices and
the decision to stabilize thresholds instead of auto-tuning them under load.

Zero Trust in the mesh reduces the attack surface by constraining network
reachability and tying authorization to verified service identities and request context
[2], [5]. Mutual TLS prevents unauthorized connections; policy guardrails ensure that
only approved inter-service routes are viable. Coupling this with edge-level anomaly
monitoring yields a “double safety net”: if inbound traffic drifts toward suspicious
patterns, automated playbooks can escalate controls—progressively challenging clients,
limiting rates, or temporarily blocking routes—without manual intervention on the
critical path [3], [4]. Operationalization emphasizes policies-as-code and safe rollout.
Mesh policies and edge controls are versioned and validated in CI before deployment;
synthetic canaries exercise rapid rate shifts and protocol quirks; and every change is
annotated in metrics and traces to attribute latency and accuracy effects
unambiguously. Remediation playbooks follow a graded path—lightweight challenges
and short-lived limits first; targeted blocks only if deviations persist—with automatic
rollback once feature vectors re-enter the normal corridor. Cost guards are applied to
logging and inference so that the blueprint remains feasible in small lab accounts while
scaling predictably to larger testbeds.

To keep the evaluation focused and space-efficient, Table 1 summarizes six key
KPIs used throughout the study. The metrics jointly capture overhead (latency and
throughput), detection quality (precision/recall/F1 and false alarms during clean
periods), and operational responsiveness (time-to-detect and the share of incidents
resolved automatically). Targets are chosen to keep mesh/mTLS overhead within a
strict budget while preserving timely detection during adversarial bursts and
maintaining operator-free mitigation for the majority of routine incidents.
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Table 1. Compact evaluation KPIs

KPI What it captures How it’s measured Target
- A p95 service-to-service o
p95 latency overhead | Tail impact of mesh/mTLS vs. baseline <5%
. . A RPS/bitrate on control o
Throughput impact Capacity under controls endpoints <3%

Minute-level aggregates

Detection quality across | " cr/a| BY with labeled | F1 > 0.95

Precision / Recall / F1

regimes windows
False alarms per clean Robustness in quiet FP count over purely benign 0-1/hr
hour periods intervals
Time-to-Detect (TTD) Alert timeliness Minutes from deviation to alert <1 min
T
Auto-mitigation share | Operator load reduction % incidents closed > 80%

automatically

Using these KPIs, the evaluation reports mean and p95 latency overhead on
internal calls, throughput impact, stability under load, precision/recall/F1 across three
traffic regimes, the count of false alarms during clean periods, and time to detection
and time to recovery for scenarios that trigger automated responses. The study also
tracks the share of incidents mitigated without operator involvement and the fraction
of unauthorized intra-cluster connection attempts blocked by mesh policies.

The expected outcome is a measured confirmation that representative training
data matter more than model complexity for edge anomaly detection; that false-positive
rates remain low during clean periods while timely detection is preserved during
adversarial bursts; and that mesh-enforced mutual TLS and route segmentation
introduce minimal overhead within agreed service objectives. The resulting blueprint
is immediately applicable in academic labs and production-like testbeds, using
managed AWS services, transparent features, and simple models to raise security
posture without brittle complexity.
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