
Modern Trends in the Development of Science and Society

Research Europe | 185

UDC 004.056.5:004.75 DOI: https://doi.org/10.64076/iedc251023.04

Improving cloud security on AWS: zero trust for

containerized services and lightweight edge anomaly detection

Vitalii Molnar

Lviv Polytechnic National University, Lviv

https://orcid.org/0009-0001-3183-0117

Abstract. This paper presents a reproducible security blueprint for containerized applications on Amazon

Web Services. The approach combines Zero Trust enforcement in an Elastic Kubernetes Service service

mesh, using mutual Transport Layer Security and least-privilege, route-scoped policies, with

lightweight edge anomaly detection on Amazon CloudFront and the Application Load Balancer, plus

event-driven remediation. Measurements indicate a smaller attack surface and minimal overhead.

Keywords: cloud security, zero trust, service mesh, anomaly detection.

As cloud workloads scale and evolve rapidly, perimeter-centric security proves

insufficient against modern threats and frequent misconfigurations in public clouds [1].

This work proposes a practical, reproducible approach for AWS-hosted, containerized

applications that combines a Zero Trust architecture within EKS and lightweight

anomaly detection at the edge (CloudFront/ALB) with automated, event-driven

remediation [2]. The goal is to minimize implicit trust between microservices and to

detect traffic deviations early without heavy operational overhead, with decisions

grounded in measurable security outcomes. Inside clusters, lateral movement is

encouraged by over-permissive connectivity and coarse-grained authorization, while

at the boundary volatile traffic regimes–from benign flash-crowds to short, intense

bursts–can resemble denial-of-service behaviors and defeat static rule sets [1]. A robust

solution must be measurable, CI/CD-friendly, and resilient under fluctuating loads

while preserving service-level objectives for latency and throughput [2].

To ensure reproducibility, the traffic corpus is partitioned into disjoint time

windows that reflect real operating regimes rather than random shuffles. Background

minutes capture routine usage across diurnal patterns; controlled bursts provide short,

high-pressure intervals without saturating the edge; and benign surges approximate

flash-crowd dynamics that are known to trigger false alarms in naіve detectors. Labels

are derived from scenario schedules and cross-checked against rate and error-ratio

thresholds. Features are kept deliberately compact and interpretable–minute-level

request rate, unique-client cardinality, response-code proportions, and dispersion

across source networks and user agents–so inference remains cheap and diagnostic

explanations stay straightforward.

The architecture has four layers. At the edge, Amazon CloudFront fronts the

application with AWS WAF attached; access logs are persisted to S3 for aggregation

and analysis [3]. The load-balancing tier uses Application Load Balancer with access

Proceedings of the International Scientific Conference

186 | Research Europe

logging to S3 [4]. The compute layer is Amazon EKS, where a service mesh enforces

mutual TLS by default, assigns strong service identities to pods, and applies least-

privilege, route-scoped policies that confine communication to explicitly defined paths

[3], [5]. The observability and response layer consolidates telemetry (CloudWatch and

CloudTrail), derives compact features, performs inference using simple models, and

triggers automated mitigation when anomalies are confirmed [6].

Anomaly detection operates on one-minute aggregates that capture edge-traffic

characteristics: request rate, count of unique clients, proportions of 4xx/5xx responses,

and dispersion across IPs and user agents. Using transparent models such as logistic

regression and decision trees keeps inference predictable and debuggable; critically,

detection thresholds are fixed after validation on representative slices that cover steady

background traffic, adversarial bursts, and benign surges [7]. This stabilization avoids

constant retuning during spiky periods and reduces false alarms during clean intervals.

The experiment follows a fixed-threshold protocol: detector thresholds are frozen

on a validation slice that spans the three regimes, and then evaluated on hold-out

minutes without retuning. Two ablations clarify what drives reliability. First, the

benign-surge slice is removed from the training/validation mix; the expected effect is

a rise in false alarms during clean peaks. Second, dispersion indicators are removed

from the feature set; this typically slows the onset of alerts on mixed traffic and

increases time-to-detect. Together, these ablations justify both the feature choices and

the decision to stabilize thresholds instead of auto-tuning them under load.

Zero Trust in the mesh reduces the attack surface by constraining network

reachability and tying authorization to verified service identities and request context

[2], [5]. Mutual TLS prevents unauthorized connections; policy guardrails ensure that

only approved inter-service routes are viable. Coupling this with edge-level anomaly

monitoring yields a “double safety net”: if inbound traffic drifts toward suspicious

patterns, automated playbooks can escalate controls–progressively challenging clients,

limiting rates, or temporarily blocking routes–without manual intervention on the

critical path [3], [4]. Operationalization emphasizes policies-as-code and safe rollout.

Mesh policies and edge controls are versioned and validated in CI before deployment;

synthetic canaries exercise rapid rate shifts and protocol quirks; and every change is

annotated in metrics and traces to attribute latency and accuracy effects

unambiguously. Remediation playbooks follow a graded path–lightweight challenges

and short-lived limits first; targeted blocks only if deviations persist–with automatic

rollback once feature vectors re-enter the normal corridor. Cost guards are applied to

logging and inference so that the blueprint remains feasible in small lab accounts while

scaling predictably to larger testbeds.

To keep the evaluation focused and space-efficient, Table 1 summarizes six key

KPIs used throughout the study. The metrics jointly capture overhead (latency and

throughput), detection quality (precision/recall/F1 and false alarms during clean

periods), and operational responsiveness (time-to-detect and the share of incidents

resolved automatically). Targets are chosen to keep mesh/mTLS overhead within a

strict budget while preserving timely detection during adversarial bursts and

maintaining operator-free mitigation for the majority of routine incidents.

Modern Trends in the Development of Science and Society

Research Europe | 187

Table 1. Compact evaluation KPIs
KPI What it captures How it’s measured Target

p95 latency overhead Tail impact of mesh/mTLS
Δ p95 service-to-service

vs. baseline
≤ 5%

Throughput impact Capacity under controls
Δ RPS/bitrate on control

endpoints
≤ 3%

Precision / Recall / F1
Detection quality across

regimes

Minute-level aggregates
(CF/ALB) with labeled

windows
F1 ≥ 0.95

False alarms per clean
hour

Robustness in quiet
periods

FP count over purely benign
intervals

0–1/hr

Time-to-Detect (TTD) Alert timeliness Minutes from deviation to alert ≤ 1 min

Auto-mitigation share Operator load reduction
% incidents closed

automatically
≥ 80%

 Using these KPIs, the evaluation reports mean and p95 latency overhead on

internal calls, throughput impact, stability under load, precision/recall/F1 across three
traffic regimes, the count of false alarms during clean periods, and time to detection
and time to recovery for scenarios that trigger automated responses. The study also
tracks the share of incidents mitigated without operator involvement and the fraction
of unauthorized intra-cluster connection attempts blocked by mesh policies.

The expected outcome is a measured confirmation that representative training
data matter more than model complexity for edge anomaly detection; that false-positive
rates remain low during clean periods while timely detection is preserved during
adversarial bursts; and that mesh-enforced mutual TLS and route segmentation
introduce minimal overhead within agreed service objectives. The resulting blueprint
is immediately applicable in academic labs and production-like testbeds, using
managed AWS services, transparent features, and simple models to raise security
posture without brittle complexity.

References
1. European Union Agency for Cybersecurity. (2024). ENISA threat landscape

2024. https://doi.org/10.2824/0710888.
2. Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust

architecture (NIST SP 800-207). National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-207.

3. Amazon Web Services. (n.d.). Standard logging (access logs) – Amazon
CloudFront developer guide. https://docs.aws.amazon.com/AmazonCloudFront/latest/
DeveloperGuide/AccessLogs.html.

4. Amazon Web Services. (n.d.). Access logs for your application load balancer.
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-
access-logs.html.

5. Chandramouli, R., & Rose, S. (2020). Building secure microservices-based
applications using service-mesh architecture (NIST SP 800-204A). National Institute
of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-204A.

6. Amazon Web Services. (n.d.). What is Amazon CloudWatch? https://docs.aws.ama
zon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.

7. Pinto, A., Herrera, L.-C., Donoso, Y., & Gutierrez, J. A. (2023). A survey on
intrusion detection systems based on machine learning techniques for the protection of
critical infrastructure. Sensors, 23(5), 2415. https://doi.org/10.3390/s23052415.

