
II International scientific and practical conference 
"Development of science and education in the context of globalization" 

Research Europe | 127 

Ivitskiy, I., 
PhD, Associate Professor, 
Founder, Doctor Ads LTD, London 

УДК 659.113.71 
DOI: https://doi.org/10.64076/ihrc251010.21  

 

 
 

A PORTFOLIO OPTIMIZATION MODEL FOR MEDIA 
INVESTMENT UNDER INCREMENTALITY UNCERTAINTY 

 
Advertising portfolios are increasingly selected under noisy estimates of causal 

lift. The practical objective is to allocate a fixed budget across channels to maximize 
expected incremental profit while controlling downside risk that arises from uncertain 
incrementality, cross-channel interference, and diminishing returns. This abstract 
proposes a two-layer model that merges posterior estimates of incremental return 
on ad spend with portfolio optimization and robust control ideas from operations 
research [1–3,7]. 

Suppose there are 𝐾𝐾 channels, with spend vector 𝑥𝑥 in 𝑅𝑅+𝐾𝐾  and total budget 𝐵𝐵. 
Let 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖) denote the incremental revenue response for channel 𝑖𝑖 as a function of 
spend 𝑥𝑥𝑖𝑖 . For small perturbations around the operating point, define the local 
marginal incremental return 𝑟𝑟𝑖𝑖  and quantify its uncertainty with a posterior mean 
mui  and covariance matrix Sigma obtained from randomized geo experiments or 
matched-pair designs [2]. The portfolio objective is then written as: 
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where λ is a risk-aversion coefficient. The first term aggregates expected incremental 
revenue across channels; the second penalizes uncertainty via the portfolio variance 
that propagates from the uncertainty in 𝑟𝑟𝑖𝑖 and cross-channel correlations encoded in 
Sigma. This structure generalizes mean–variance portfolio selection to advertising 
and inherits its efficient-frontier intuition [1]. 

To connect with real media behavior, 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖) should be concave and saturating. 
In practice, 𝑆𝑆𝑖𝑖 is estimated by a media mix model that jointly learns carryover and 
saturation effects, for example the open-source Robyn approach, which fits adstock 
and Hill-type curves and returns uncertainty for response parameters [5]. In the local 
region, a first-order approximation yields 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖) ≈ 𝑆𝑆𝑖𝑖�𝑥𝑥𝑖𝑖0� + 𝑟𝑟𝑖𝑖�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖0�, which maps 
the objective above to a convex program in x whenever the variance term is quadratic 
in 𝑥𝑥. For larger reallocations, one solves the same program on a discretized grid of 𝑥𝑥𝑖𝑖 
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values, using the nonlinear 𝑆𝑆𝑖𝑖 values with bootstrapped uncertainty bands from the 
mix model [3,5]. 

Incrementality estimates enter from experiments. Randomized paired geo 
designs and the Trimmed-Match estimator provide distribution-free iROAS posteriors 
that are robust when the number of geos is small and heterogeneous [2]. The 
optimizer uses posterior means to set mu and uses posterior covariance to populate 
Sigma. Where experiments are scarce, the model falls back to robust optimization by 
imposing an uncertainty set around mu and solving a worst-case problem: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥≥0

𝑚𝑚𝑚𝑚𝑚𝑚
𝜇𝜇∈𝒰𝒰

𝜇𝜇⊤𝑥𝑥 − 𝜆𝜆�𝑥𝑥⊤𝛴𝛴𝛴𝛴 s.t. �𝑥𝑥𝑖𝑖

𝐾𝐾

𝑖𝑖=1

= 𝐵𝐵, (2) 

where 𝒰𝒰 is a budgeted or fuzzy set calibrated from expert judgments and platform 
telemetry [7]. This protects against optimistic lift estimates without requiring full 
probability models. 

The model also acknowledges platform mechanics. Portfolio bid strategies in 
auction platforms couple individual campaigns through shared constraints and 
pacing; treating them as one instrument inside the optimizer is realistic and avoids 
double counting of risk when budgets are linked [4]. The dynamic nature of campaigns 
leads to a learning loop: a small exploration fraction epsilon of budget is routed to 
policies that maximize information gain, for example contextual bandit allocation that 
balances exploration and exploitation and updates the posterior for mu, Sigma online 
[6]. This loop reduces uncertainty over time and moves the operating point along the 
efficient frontier as data accumulates. 

Computation proceeds in four steps. First, estimate 𝑆𝑆𝑖𝑖  and uncertainty with a 
modern MMM, calibrating to any experiment-based priors where available [5]. 
Second, run at least one geo-level incrementality test per major channel cluster to pin 
down posterior means and covariances for local marginal returns [2]. Third, solve the 
convex program for 𝑥𝑥  with either the mean–variance objective or its robust 
counterpart when evidence is sparse [1,3,7]. Fourth, deploy a contextual bandit to 
manage the exploration budget and refresh mu, Sigma on a rolling window [6]. 
Quantities appear directly in the optimizer: the budget 𝐵𝐵 is the equality constraint; 
the risk trade-off lambda is set by acceptable confidence shortfall in incremental 
profit; any channel-level minimums or platform pacing rules enter as linear 
constraints, for example 𝑥𝑥𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖 for legal or brand safety reasons. 

A useful diagnostic is the implied incremental return frontier. Let 𝐺𝐺(𝑥𝑥) =
∑ 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖)𝑖𝑖  and define a variance proxy 𝑉𝑉(𝑥𝑥) = 𝑥𝑥⊤𝛴𝛴𝛴𝛴. Plotting 𝐸𝐸[𝐺𝐺(𝑥𝑥)] against �𝑉𝑉(𝑥𝑥) 
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for the optimal 𝑥𝑥 at different lambda values yields a curve of achievable trade-offs 
that decision makers can compare to internal cost of capital. In settings with severe 
left-tail risk, replace variance with conditional value at risk by solving 

𝑚𝑚𝑚𝑚𝑚𝑚
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where 𝐿𝐿(𝑥𝑥) is the shortfall of incremental profit relative to a floor and eta is the 
penalty weight. This is compatible with robust sets that represent worst-case lifts 
within an uncertainty budget [7]. 

The approach remains general enough for the “Economics and Technologies” 
track. It ties causal evidence to optimization, accommodates platform coupling 
through shared budget instruments, and supplies a disciplined way to trade expected 
incremental profit against uncertainty rather than relying on platform-reported proxy 
metrics [2–6]. 
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