
Proceedings of the 2nd International Scientific Conference 

82 | Research Europe 
 

UDC 004.9:004.4 DOI: https://doi.org/10.64076/iedc250905.15 
 

Node balancing for big data processing 
using machine learning techniques 

 
Dmytro Vovchenko 

National Technical University of Ukraine 
“Igor Sikorsky Kyiv polytechnic institute”, Kyiv 

https://orcid.org/0009-0008-1806-5159 
Liubov Oleshchenko 

National Technical University of Ukraine 
“Igor Sikorsky Kyiv polytechnic institute”, Kyiv 

https://orcid.org/0000-0001-9908-7422 
 
Abstract. Traditional node balancing techniques often fail to adapt to dynamic workloads and 
heterogeneous resources, leading to inefficiencies in distributed environments. This paper presents 
the development of a machine learning–based algorithm that leverages real-time telemetry and 
predictive modeling to optimize node balancing. The proposed approach integrates workload 
forecasting, dynamic weight computation, and adaptive scheduling to improve resource utilization 
and system stability. Experimental evaluation highlights reduced latency, higher throughput, and 
better scalability compared to rule-based methods. 
Keywords: node balancing, machine learning, reinforcement learning, predictive scheduling, 
distributed systems, Kubernetes, resource allocation, scalability, cloud computing. 

 
The rapid expansion of distributed systems, cloud infrastructures, and large-scale 

networks has created new challenges in ensuring efficiency and stability. One of the 
core issues is node balancing, which directly influences system throughput, resource 
utilization, and fault tolerance. Traditional balancing algorithms often rely on static 
rules or heuristics, which cannot adequately adapt to dynamic workloads and 
unpredictable behavior of modern data flows [1-5]. 

By incorporating machine learning (ML) techniques, node balancing can move 
beyond rigid configurations and become adaptive, predictive, and self-optimizing. ML-
based methods allow systems to forecast load fluctuations, detect anomalies in resource 
consumption, and automatically adjust task allocation across nodes. This results in 
higher performance, reduced latency, and better resilience under stress conditions such 
as traffic peaks or partial node failures. 

The relevance of this research is further strengthened by the increasing reliance 
on real-time applications, edge computing, and mission-critical services, where 
downtime or inefficiency can lead to significant losses. Developing a ML–driven node 
balancing method contributes not only to improved scalability of computing systems 
but also to the advancement of intelligent infrastructures capable of self-management 
and continuous optimization.  

Traditional balancing strategies, such as round-robin or hash-based algorithms, 
are often unable to adapt to highly dynamic workloads and unpredictable data traffic 
patterns. As a result, systems face bottlenecks, increased latency, and reduced reliability 
when handling massive volumes of real-time data. 
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ML a promising paradigm shift for addressing these limitations by enabling 
adaptive and intelligent node balancing. ML-based approaches can analyze historical 
and real-time system metrics – such as CPU usage, memory consumption, request 
frequency, and response time – to predict future loads and automatically redistribute 
tasks across nodes. This predictive capability allows for proactive adjustments rather 
than reactive fixes, leading to improved efficiency and reduced downtime. 

Аpplying ML techniques, such as reinforcement learning, decision trees, or neural 
networks, enables the creation of self-optimizing systems that continuously learn from 
operational feedback. Such systems can minimize query processing time, maximize 
throughput, and optimize resource utilization under varying conditions. Importantly, 
these methods enhance fault tolerance by quickly detecting overloaded or failing nodes 
and rerouting tasks in a resilient manner. 

In the context of big data, where processing speed and responsiveness are critical, 
integrating ML into node balancing represents a cutting-edge solution. It not only addresses 
scalability challenges but also lays the foundation for autonomous distributed 
infrastructures that can sustain the increasing demands of data-driven industries. 

In modern big data processing systems, one of the key challenges is efficient node 
balancing, which directly impacts performance, resilience, and scalability of the 
infrastructure. Traditional algorithms, such as round-robin or hash-based distribution, 
often prove insufficiently flexible in dynamic environments where workloads fluctuate 
rapidly. For this reason, increasing attention is being given to machine learning 
methods, which are capable of adaptively predicting system states and making 
decisions about workload distribution. 

One promising approach is the use of reinforcement learning methods, such as Q-
learning and Deep Q-Networks, in cloud environments. These agents can learn from 
previous experience and optimize request routing across data centers, reducing latency 
and preventing overload. In environments such as Hadoop or Apache Spark, models 
like Random Forest, Gradient Boosting, or LSTM are used to predict future load peaks. 
This enables proactive task redistribution to less loaded nodes, significantly improving 
processing efficiency. 

Another real-world example is automatic scaling in Kubernetes (K8s). Here, 
recurrent neural networks (RNNs, LSTMs) are applied for time-series prediction of 
workload, enabling the system to balance containers across nodes and launch additional 
resources before the system reaches a critical load. Similar solutions are employed in 
global Content Delivery Networks (CDNs), where Support Vector Machines and 
Decision Trees analyze latency and network quality to direct users to the optimal 
server, reducing latency by 20–30% compared to traditional approaches. 

An equally important task is anomaly detection and identification of faulty nodes, 
addressed through unsupervised learning techniques such as K-means or autoencoders. 
These methods analyze system logs and performance metrics to identify unusual 
deviations that may indicate failures. This allows load balancers to dynamically 
exclude problematic nodes from request distribution schemes. In “green” data centers, 
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ML is also applied for multi-objective optimization, where reinforcement learning 
algorithms are trained to balance performance and energy efficiency, directing 
workloads toward nodes with better energy profiles without compromising service 
quality. The integration of machine learning techniques into node balancing not only 
enhances performance but also paves the way for creating self-learning, adaptive 
infrastructures. This provides the foundation for efficient operation in big data 
environments where resilience and responsiveness are critical. 

Traditional node balancing methods, such as Round Robin or Least Connections, 
are widely used due to their simplicity and low overhead but suffer from several 
limitations. They are largely static, rely on pre-defined rules, and lack the ability to 
adapt dynamically to fluctuating workloads. These methods often ignore resource 
heterogeneity (CPU, memory, I/O), have no predictive capability for workload surges, 
and can lead to bottlenecks or inefficient utilization in large-scale distributed 
environments (Table 1).  

 
Table 1. Comparison of traditional and ML–based node balancing methods 

Criteria Traditional methods (Round 
Robin, Least Connections) 

ML-based methods (Reinforcement 
Learning, Predictive Scheduling) 

Adaptability 

Static rules; limited flexibility to 
workload changes. Examples: 
Nginx, HAProxy (LeastConn, 
Round Robin). 

Dynamic adjustment based on historical 
and real-time data. Examples: Kubernetes 
schedulers with ML plugins, Google 
Borg RL-based policies. 

Resource 
Awareness 

Often ignores CPU, memory, or 
network utilization. 

Considers multi-dimensional metrics 
(CPU, memory, I/O, bandwidth). 
Examples: Kubernetes Kube-Scheduler 
with ML extensions, Apache YARN ML-
based allocation. 

Latency 
Reduction 

May cause bottlenecks under burst 
traffic. 

Learns traffic patterns to reduce response 
times. Examples: Netflix predictive 
autoscaling with ML, Google’s Adaptive 
Load Balancing. 

Implementation 
Complexity 

Simple, lightweight, minimal 
configuration. 

Requires ML model training, tuning, and 
inference overhead. Examples: 
TensorFlow-serving integrated 
schedulers, custom RL-based 
orchestrators. 

Scalability Limited in highly heterogeneous, 
cloud-native systems. 

Designed for distributed and elastic 
infrastructures. Examples: ML-enhanced 
Kubernetes, OpenAI cluster schedulers. 

Predictive 
Capabilities 

No forecasting; only reacts to 
current state. 

Forecasts workload trends for proactive 
allocation. Examples: AWS Auto Scaling 
with ML, Microsoft Azure ML-driven 
resource managers. 

Fault Tolerance Relies on redundancy, but can miss 
early failure detection. 

Integrates anomaly detection and self-
healing. Examples: Google Borg, 
Facebook Autoscale ML framework. 



Trends, Issues, and Challenges in Modern Science 

Research Europe | 85 
 

Traditional approaches, such as those used in Nginx and HAProxy, remain widely 
adopted due to their simplicity and reliability but are limited in adaptability and 
predictive capacity. In contrast, ML-driven solutions – exemplified by Kubernetes ML 
schedulers, Google Borg, and Netflix’s predictive scaling – leverage historical and 
real-time telemetry to optimize load distribution, anticipate demand spikes, and 
increase fault tolerance. While these methods enhance scalability and resilience, they 
also introduce additional complexity and resource costs, emphasizing the need for 
hybrid approaches that balance efficiency with intelligence. 

ML–based approaches overcome many of these limitations by leveraging 
historical and real-time telemetry data. They enable adaptive and proactive scheduling, 
predictive scaling, and anomaly detection, significantly improving system 
responsiveness and reliability. ML-driven methods also consider multi-dimensional 
resource metrics, enhance scalability in cloud-native infrastructures, and support self-
healing mechanisms, making them more suitable for modern, heterogeneous, and 
elastic computing environments. By leveraging supervised, unsupervised, and 
reinforcement learning techniques, distributed systems can achieve higher throughput, 
reduced latency, and improved fault tolerance, while also optimizing energy efficiency. 
These advances highlight the potential of ML-driven node balancing as a cornerstone 
for the next generation of scalable, intelligent big data infrastructures. 

Our research focus on developing hybrid algorithm that combine the robustness 
and simplicity of traditional methods with the adaptability and intelligence of ML-
based solutions. Particular attention for reducing the computational overhead of ML 
models, designing explainable and trustworthy scheduling policies, and integrating 
predictive resource allocation with edge and cloud computing platforms. Exploring 
reinforcement, federated learning, and energy-aware load balancing represents 
promising directions for advancing node balancing in large-scale distributed systems. 
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