
Proceedings of the 2nd International Scientific Conference

82 | Research Europe

UDC 004.9:004.4 DOI: https://doi.org/10.64076/iedc250905.15

Node balancing for big data processing
using machine learning techniques

Dmytro Vovchenko

National Technical University of Ukraine
“Igor Sikorsky Kyiv polytechnic institute”, Kyiv

https://orcid.org/0009-0008-1806-5159
Liubov Oleshchenko

National Technical University of Ukraine
“Igor Sikorsky Kyiv polytechnic institute”, Kyiv

https://orcid.org/0000-0001-9908-7422

Abstract. Traditional node balancing techniques often fail to adapt to dynamic workloads and
heterogeneous resources, leading to inefficiencies in distributed environments. This paper presents
the development of a machine learning–based algorithm that leverages real-time telemetry and
predictive modeling to optimize node balancing. The proposed approach integrates workload
forecasting, dynamic weight computation, and adaptive scheduling to improve resource utilization
and system stability. Experimental evaluation highlights reduced latency, higher throughput, and
better scalability compared to rule-based methods.
Keywords: node balancing, machine learning, reinforcement learning, predictive scheduling,
distributed systems, Kubernetes, resource allocation, scalability, cloud computing.

The rapid expansion of distributed systems, cloud infrastructures, and large-scale

networks has created new challenges in ensuring efficiency and stability. One of the
core issues is node balancing, which directly influences system throughput, resource
utilization, and fault tolerance. Traditional balancing algorithms often rely on static
rules or heuristics, which cannot adequately adapt to dynamic workloads and
unpredictable behavior of modern data flows [1-5].

By incorporating machine learning (ML) techniques, node balancing can move
beyond rigid configurations and become adaptive, predictive, and self-optimizing. ML-
based methods allow systems to forecast load fluctuations, detect anomalies in resource
consumption, and automatically adjust task allocation across nodes. This results in
higher performance, reduced latency, and better resilience under stress conditions such
as traffic peaks or partial node failures.

The relevance of this research is further strengthened by the increasing reliance
on real-time applications, edge computing, and mission-critical services, where
downtime or inefficiency can lead to significant losses. Developing a ML–driven node
balancing method contributes not only to improved scalability of computing systems
but also to the advancement of intelligent infrastructures capable of self-management
and continuous optimization.

Traditional balancing strategies, such as round-robin or hash-based algorithms,
are often unable to adapt to highly dynamic workloads and unpredictable data traffic
patterns. As a result, systems face bottlenecks, increased latency, and reduced reliability
when handling massive volumes of real-time data.

Trends, Issues, and Challenges in Modern Science

Research Europe | 83

ML a promising paradigm shift for addressing these limitations by enabling
adaptive and intelligent node balancing. ML-based approaches can analyze historical
and real-time system metrics – such as CPU usage, memory consumption, request
frequency, and response time – to predict future loads and automatically redistribute
tasks across nodes. This predictive capability allows for proactive adjustments rather
than reactive fixes, leading to improved efficiency and reduced downtime.

Аpplying ML techniques, such as reinforcement learning, decision trees, or neural
networks, enables the creation of self-optimizing systems that continuously learn from
operational feedback. Such systems can minimize query processing time, maximize
throughput, and optimize resource utilization under varying conditions. Importantly,
these methods enhance fault tolerance by quickly detecting overloaded or failing nodes
and rerouting tasks in a resilient manner.

In the context of big data, where processing speed and responsiveness are critical,
integrating ML into node balancing represents a cutting-edge solution. It not only addresses
scalability challenges but also lays the foundation for autonomous distributed
infrastructures that can sustain the increasing demands of data-driven industries.

In modern big data processing systems, one of the key challenges is efficient node
balancing, which directly impacts performance, resilience, and scalability of the
infrastructure. Traditional algorithms, such as round-robin or hash-based distribution,
often prove insufficiently flexible in dynamic environments where workloads fluctuate
rapidly. For this reason, increasing attention is being given to machine learning
methods, which are capable of adaptively predicting system states and making
decisions about workload distribution.

One promising approach is the use of reinforcement learning methods, such as Q-
learning and Deep Q-Networks, in cloud environments. These agents can learn from
previous experience and optimize request routing across data centers, reducing latency
and preventing overload. In environments such as Hadoop or Apache Spark, models
like Random Forest, Gradient Boosting, or LSTM are used to predict future load peaks.
This enables proactive task redistribution to less loaded nodes, significantly improving
processing efficiency.

Another real-world example is automatic scaling in Kubernetes (K8s). Here,
recurrent neural networks (RNNs, LSTMs) are applied for time-series prediction of
workload, enabling the system to balance containers across nodes and launch additional
resources before the system reaches a critical load. Similar solutions are employed in
global Content Delivery Networks (CDNs), where Support Vector Machines and
Decision Trees analyze latency and network quality to direct users to the optimal
server, reducing latency by 20–30% compared to traditional approaches.

An equally important task is anomaly detection and identification of faulty nodes,
addressed through unsupervised learning techniques such as K-means or autoencoders.
These methods analyze system logs and performance metrics to identify unusual
deviations that may indicate failures. This allows load balancers to dynamically
exclude problematic nodes from request distribution schemes. In “green” data centers,

Proceedings of the 2nd International Scientific Conference

84 | Research Europe

ML is also applied for multi-objective optimization, where reinforcement learning
algorithms are trained to balance performance and energy efficiency, directing
workloads toward nodes with better energy profiles without compromising service
quality. The integration of machine learning techniques into node balancing not only
enhances performance but also paves the way for creating self-learning, adaptive
infrastructures. This provides the foundation for efficient operation in big data
environments where resilience and responsiveness are critical.

Traditional node balancing methods, such as Round Robin or Least Connections,
are widely used due to their simplicity and low overhead but suffer from several
limitations. They are largely static, rely on pre-defined rules, and lack the ability to
adapt dynamically to fluctuating workloads. These methods often ignore resource
heterogeneity (CPU, memory, I/O), have no predictive capability for workload surges,
and can lead to bottlenecks or inefficient utilization in large-scale distributed
environments (Table 1).

Table 1. Comparison of traditional and ML–based node balancing methods

Criteria Traditional methods (Round
Robin, Least Connections)

ML-based methods (Reinforcement
Learning, Predictive Scheduling)

Adaptability

Static rules; limited flexibility to
workload changes. Examples:
Nginx, HAProxy (LeastConn,
Round Robin).

Dynamic adjustment based on historical
and real-time data. Examples: Kubernetes
schedulers with ML plugins, Google
Borg RL-based policies.

Resource
Awareness

Often ignores CPU, memory, or
network utilization.

Considers multi-dimensional metrics
(CPU, memory, I/O, bandwidth).
Examples: Kubernetes Kube-Scheduler
with ML extensions, Apache YARN ML-
based allocation.

Latency
Reduction

May cause bottlenecks under burst
traffic.

Learns traffic patterns to reduce response
times. Examples: Netflix predictive
autoscaling with ML, Google’s Adaptive
Load Balancing.

Implementation
Complexity

Simple, lightweight, minimal
configuration.

Requires ML model training, tuning, and
inference overhead. Examples:
TensorFlow-serving integrated
schedulers, custom RL-based
orchestrators.

Scalability Limited in highly heterogeneous,
cloud-native systems.

Designed for distributed and elastic
infrastructures. Examples: ML-enhanced
Kubernetes, OpenAI cluster schedulers.

Predictive
Capabilities

No forecasting; only reacts to
current state.

Forecasts workload trends for proactive
allocation. Examples: AWS Auto Scaling
with ML, Microsoft Azure ML-driven
resource managers.

Fault Tolerance Relies on redundancy, but can miss
early failure detection.

Integrates anomaly detection and self-
healing. Examples: Google Borg,
Facebook Autoscale ML framework.

Trends, Issues, and Challenges in Modern Science

Research Europe | 85

Traditional approaches, such as those used in Nginx and HAProxy, remain widely
adopted due to their simplicity and reliability but are limited in adaptability and
predictive capacity. In contrast, ML-driven solutions – exemplified by Kubernetes ML
schedulers, Google Borg, and Netflix’s predictive scaling – leverage historical and
real-time telemetry to optimize load distribution, anticipate demand spikes, and
increase fault tolerance. While these methods enhance scalability and resilience, they
also introduce additional complexity and resource costs, emphasizing the need for
hybrid approaches that balance efficiency with intelligence.

ML–based approaches overcome many of these limitations by leveraging
historical and real-time telemetry data. They enable adaptive and proactive scheduling,
predictive scaling, and anomaly detection, significantly improving system
responsiveness and reliability. ML-driven methods also consider multi-dimensional
resource metrics, enhance scalability in cloud-native infrastructures, and support self-
healing mechanisms, making them more suitable for modern, heterogeneous, and
elastic computing environments. By leveraging supervised, unsupervised, and
reinforcement learning techniques, distributed systems can achieve higher throughput,
reduced latency, and improved fault tolerance, while also optimizing energy efficiency.
These advances highlight the potential of ML-driven node balancing as a cornerstone
for the next generation of scalable, intelligent big data infrastructures.

Our research focus on developing hybrid algorithm that combine the robustness
and simplicity of traditional methods with the adaptability and intelligence of ML-
based solutions. Particular attention for reducing the computational overhead of ML
models, designing explainable and trustworthy scheduling policies, and integrating
predictive resource allocation with edge and cloud computing platforms. Exploring
reinforcement, federated learning, and energy-aware load balancing represents
promising directions for advancing node balancing in large-scale distributed systems.

References

1. Singh N., Hamid Y., Juneja S. Load balancing and service discovery using
Docker Swarm for microservice based big data applications. Journal of Cloud
Computing 12, 4. 2023. DOI: https://doi.org/10.1186/s13677-022-00358-7.

2. Pan Z., Jiangxing Z. Load Balancing Algorithm for Web Server Based on
Weighted Minimal Connections. Journal of Web Systems and Applications. 2017. Vol.
1. P. 1–8. DOI: https://dx.doi.org/10.23977/jwsa.2017.11001.

3. Pei-rui J., Li-min M., Yu-zhou S., Yang-tian-xiu H. A client proximity based
load balance algorithm in web sever cluster. 2nd International Conference on Wireless
Communication and Network Engineering. 2017. P. 317–322.

4. Li R., Li Y., Li W. An integrated load-balancing scheduling algorithm for
nginx-based web application clusters. Journal of Physics: Conference Series 1060
012078. 2018. DOI: 10.1088/1742-6596/1060/1/012078.

5. Wei C., Hou J., Ma D., Zhao J., Sun Y. Design and implementation of a TCP long
connection load balancing algorithm based on negative feedback mechanism. Journal of
Physics: Conference Series 1659 012001. 2020. DOI: 10.1088/1742-6596/1659/1/012001.

